
Army Research Laboratory

Outer Scale and Diffraction Influences

on Observed Angle-of-Arrival Variance

by David H. Tofsted

ARL-TR-6231 October 2012

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated

by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.



Army Research Laboratory
White Sands Missile Range, NM 88002-5501

ARL-TR-6231 October 2012

Outer Scale and Diffraction Influences
on Observed Angle-of-Arrival Variance

David H. Tofsted

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHOR(S) 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:  
19a. NAME OF RESPONSIBLE PERSON

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

October 2012 Final

ARL-TR-6231

Approved for public release; distribution is unlimited.

05 2012–08 2012

Outer Scale and Diffraction Influences on Observed Angle-of-Arrival Variance

David H. Tofsted

U.S. Army Research Laboratory

ATTN: RDRL-CIE-D

White Sands Missile Range, NM 88002-5501

primary author’s email: <david.h.tofsted.civ@mail.mil>

Analysis of turbulence distorted imagery may allow turbulence strength (C2

n
) to be estimated based on observed object motions

(angle-of-arrival variations) in multi-frame image sequences. Such estimation methods would be useful when measured

scintillometer data is unavailable, but should account for outer scale and diffraction effects, as these may influence the C2

n

turbulence strength prediction. The present paper analyzes these effects on single-axis angle-of-arrival variance for the case of

spherical wave propagation and homogeneous turbulence properties. The analysis indicates outer scale influences may be

significant, depending on the height of the line of sight and the system aperture size.

Turbulence, angle of arrival, outer scale, diffraction

UU 26

David H. Tofsted

575-678-3039Unclassified Unclassified Unclassified

ii



Contents

List of Figures iv

1. Introduction 1

2. General Angle-of-Arrival Variance Calculation Procedure 2

3. Revised von Kármán Spectrum 4

4. Outer Scale and Diffraction Influenced Angle-of-Arrival 7

5. Discussion 14

6. Conclusions 17

7. References 18

Distribution List 20

iii



List of Figures

Figure 1. Phase structure function diffraction dependence factor α(R), with R = Qu, for

constant Kolmogorov turbulence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2. Angle-of-arrivalvariance diffraction dependence functionG(Q), withQ = D/
√
λL =

D/P , for constant Kolmogorov turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3. Outer scale cutoff of the wave structure function (solid line) compared to (Zu)5/3

power law for Kolmogorov wave structure function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 4. Outer scale impact on transition function of phase structure function. 13 plots of

different Qu values from 2−6 (bottom-most curve) to 2+6 (upper-most curve) differing

by a factor of 2 between each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 5. Comparison of α(R) from the Kolmogorov turbulence model, versus A(R,Zu)

from the Revised von Kármán turbulence model, with R = Qu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 6. Weighting function GG(Q,Z) for the range 10−8 < Z < 10+4 and 2−6 < Q <

2+6 (lowest to highest curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 7. Comparison of G(Q) function plotted in figure 2 against the GG(Q,Z) from

figure 6 for small Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



1. Introduction

In a recent paper a new method was described to evaluate the short–exposure Modulation

Transfer Function (MTF) (Tofsted, 2011). Part of that reanalysis evaluated diffraction-related

effects on the phase structure function which impacted both the angle-of-arrival variance and a

phase-tilt correlation term. However, that analysis considered only Kolmogorov turbulence (no

outer scale of turbulence influence). The outer scale is well known to affect angle-of-arrival (e.g.,

Tofsted, 1992), but that and other analyses did not consider aperture effects leading to diffraction

influences. To study the outer scale influence, the low frequency portion of the refractive index

spectrum must first be modeled, then its impacts on the angle-of-arrival must be evaluated

numerically. This low frequency influence is parameterized relative to the outer scale of

turbulence, Lo.

For completeness, we begin by considering prior angle-of-arrival variance formulations, as

reported by Beland (1993) and Dror and Kopeika (1995). Beland (1993) provided a formula for

plane wave angle-of-arrival variance:

〈α2〉 = 2.91D−1/3

∫ L

0

C2
n(z) dz, (1)

where D is the system entrance pupil diameter [m], L is the path length [m], z is the path

variable, and C2
n is the refractive index structure parameter [m−2/3].

Dror and Kopeika (1995) suggested the spherical wave single-axis angle-of-arrival variance

formula,

〈α2

x〉 = 2.92D−1/3

∫ L

0

C2

n(z)
(
z

L

)5/3

dz, Z < 1 � Q, (2)

where diffraction and outer scale related dimensionless scales are introduced: Q = D/(λL)1/2

and Z = D/Lo , where λ is the propagation wavelength. (Note, Dror and Kopeika claimed

equation 2 was a single-axis result, but comparison with equation 1 indicates a discrepancy.

Either the Dror and Kopeika result is too large by a factor of two, or the Beland result is too small

by a factor of two.)

The current study extends the above results to include outer scale and diffraction effects

(dependence on Q and Z variables) for the spherical wave case. For tabulation purposes the

diffraction and outer scale effects are studied under conditions of homogeneous turbulence.
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Motivating this study is the application where measured angle-of-arrival variance is used to

predict turbulence strength, C2
n. That is, experiments specifically designed to study the impacts

of turbulence typically measure turbulence strength directly using one or more scintillometers. In

other circumstances collected imagery may exhibit turbulence impacts but lack corresponding

turbulence measurements. Further, some imaging configurations may preclude the use of

scintillometers, for example if objects of interest are airborne. Hence, if imagery alone can be

analyzed to estimate C2
n, this extends the potential analysis of turbulence effects to greater

numbers of data sets.

For this case, it is important to know how outer scale and diffraction effects are impacting the

estimates of turbulence via angle-of-arrival. As will be shown, while the error is not great,

including outer scale effects adds an additional source of error to the calculations. The remainder

of the paper is devoted to resolving how to evaluate the angle-of-arrival variance given knowledge

of the turbulence strength, outer scale, and optical problem geometry. We first overview the

calculation in section 2, but leave the final resolution of the analysis to section 4. Between these

two, in section 3 we introduce the revised von-Kármán (RvK) spectrum first described in Tofsted

et al. (2007), including the definition for the outer scale given in terms of height above the

ground and the Obukhov length (e.g., Obukhov, 1946; Paulson, 1970).

2. General Angle-of-Arrival Variance Calculation Procedure

In this section we overview the angle-of-arrival variance calculation procedure. Let 〈α2〉 be the

angle-of-arrival variance, assumed isotropic such that x and y axis components are equal. To

model this variance, the basic tilt calculation included in Fried’s (1966) short-exposure imaging

paper is adapted. That approach considered the phase produced by a point source and propagated

a distance L to the entrance pupil of a circular aperture system. There, Fried’s main integral form

was integrated in the aperture. Fried considered the propagated phase could be expressed as a

function φ(v), of the two-dimensional vector in the transverse plane of the receiver entrance

pupil, v.

Fried considered that the tilt effect could be parameterized by a vector, a, whose dimensions are

that of inverse length (m−1), to represent the mean tilt of the incident phase across the aperture.

This vector permits a new tilt-corrected phase function to be defined, as ψ(v) = φ(v) − a · v, in

the system entrance pupil.
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The variance of a could be expressed in integral form in the system aperture by,

〈a · a〉 =
64

D2

∫
1

0

u du [FC(u) − FL(u)] Dφ(Du), (3)

where functions FC(u) and FL(u) are given by,

FC(u) = (2/π)
(
cos−1(ω) − ω

√
1 − ω2

)
,

FL(u) = (2/π)
(
3 cos−1(ω) − ω

[
7 − 4u2

] √
1 − ω2

)
, (4)

and where Dφ(ρ) is the phase structure function (e.g., Goodman, 1985) for a transverse separation

distance ρ in the system aperture.

The vector a physically represents the rate of phase change per unit distance in the system

aperture. This vector is transformed into an angular dimension by dividing the variance of a by

the wavenumber (k = 2π/λ). The a variance can thus be transformed into an angular variance

via:

〈α · α〉 = 〈a · a〉/k2. (5)

This transformation is based on an argument using similar triangles.

The key to extending these results beyond Kolmogorov turbulence is to include outer scale

influences in the phase structure function calculation. For spherical wave propagation this

function is given as,

Dφ(ρ) = 8π2 k2 L
∫

1

0

dc
∫

∞

0

κdκΦn(κ) [1 − J0(κ c ρ)] cos2

[
κ2 λL c(1 − c)

4π

]

. (6)

where c is a normalized path variable (c = z/L), κ [m−1] is the spatial frequency in which the

turbulence spectrum Φn(κ) is expressed, and J0(x) is the Bessel function of the first kind order

zero.

Notice that in equation 3 Dφ utilizes the normalized distance argument u = ρ/D. In Tofsted

(2011), it was shown that when invoking constant Kolmogorov turbulence the phase structure

function could be expressed as a product of the wave structure function, D(ρ), with a function,

denoted α(R), accounting for the diffraction influence arising from the argument of the

cosine-squared term in the phase structure function’s inner integral. Comparison with the wave

structure function’s integral definition is useful:

D(ρ) = 8π2 k2 L
∫

1

0

dc
∫

∞

0

κdκΦn(κ) [1 − J0(κ c ρ)] . (7)
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The phase structure function’s integral form approaches that of the wave structure function

whenever the argument of the cosine-squared term remains small throughout integration. The

argument of α(R) is the normalized length scale R = ρ/P where P =
√
λL, the Fresnel zone,

such that R = uD/P = uQ.

This construction, Dφ(uD) = D(uD)α(uQ), is possible because the Kolmogorov refractive

index spectrum,

Φn(κ) = ΦK(κ) = β C2

n κ
−11/3, (8)

contains only the single parameter, C2
n, and where β is an integration constant,

β = (5/36)
[
22/3 Γ(5/6)

]
/
[
π3/2 Γ(2/3)

]
≈ 0.033. (9)

connecting the Kolmogorov spectrum to the unrestricted refractive index structure function,

Dn(r) = DK(r) = C2

n r
2/3. (10)

In the case of homogeneous turbulence, C2
n factors out of both structure function integrals. In the

case of the phase structure function, the remaining double integral becomes a function of only R.

This simplified result is considerably complicated by the introduction of an outer-scale

dependence in the refractive index spectrum, as discussed in the following section.

3. Revised von Kármán Spectrum

The influence of the outer scale of turbulence on angle-of-arrival measurements is to introduce a

low frequency cutoff in the spectrum. The form used to model the outer scale effect was first

introduced in 2007 (Tofsted, 2007). The revised von-Kármán (RvK) spectrum is based on

von-Kármán’s (1948) recommendation that the low frequency dependence in the spectrum should

exhibit κ2 behavior. In this section we describe this spectrum and define the outer scale behavior

in the atmospheric surface layer. In particular, we define the outer scale as a function of height

above the surface (optical line-of-sight height) as well as the Obukhov length LOB that

characterizes vertical structure within the surface layer. This analysis was originally discussed in

Tofsted (2000) and is based on analysis by Kaimal et al. (1972) of data collected during the 1968

Kansas experiment. Due to space considerations, the interested reader is directed to the

referenced documents, since only the equations describing the spectrum and outer scale are
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provided here.

The RvK spectrum can be expressed as the product of a Kolmogorov spectrum, ΦK(κ), from

equation 8, and a high-pass filter component,

Φn(κ, Lo) = ΦK(κ)Ω(κLo), (11)

where the outer scale modulating term is expressed using a weighted sum,

Ω(x) =
i=3∑

i=1

wi U1(ai x), (12)

with weighting factors, wi = (0.25, 0.50, 0.25) and frequency coefficients

ai = (0.80, 2.00, 5.00), respectively, in the basic high-pass function,

U1(X) =
(X2)

17/6

(1 +X2)17/6
. (13)

Overall, the RvK spectrum is consistent with the spectrum of Tofsted (2007), but the above

derivation clearly shows the filtering effect of Ω(κLo). The U1 function also guarantees that the

spectral dependence at low frequency is κ2, consistent with von-Kármán’s low frequency

prescription, and with the required inertial subrange high frequency κ−11/3 dependence.

The rationale for employing three shifted copies of U1 is based on comparison between the form

of U1 and the plots of Kaimal et al. (1972). The U1 function is narrower than reality, requiring

multiple shifted copies.

At this point perhaps it would be valuable to make some comment with regard to the traditional

form taken by the so-called von-Kármán (vK) spectrum. First, how this spectrum came about

and who originally proposed this form is somewhat of a mystery, though it does appear in early

writings of Tatarskii (1971). It is commonly expressed as,

ΦvK(κ, Lo) = β C2

n

[
1

(L−2
o + κ2)11/6

]

. (14)

Note that this spectrum reaches a maximum at zero frequency, while von-Kármán specifically

indicated a low frequency behavior of κ2. Also, recall that the refractive index spectrum is

actually the power spectrum for a space containing refractive index perturbations. That is, one

subtracts from the spatially varying refractive index function its mean value. Therefore the space

of refractive index perturbations has a zero mean. But the zero frequency component of the
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power spectrum is just the squared mean value, which is zero. Therefore the traditionally used

vK spectrum is technically incorrect while the RvK spectrum properly characterizes the behavior

at the origin and reflects an energy containing range (e.g., Hinze, 1987). This is not to say that

this spectrum is without faults. It assumes isotropy, which is inaccurate for larger scale

perturbations, but that is a topic for a separate analysis. Perhaps a more accurate spectrum could

be developed in the future that includes a flattening of the spectrum at lower frequencies,

consistent with more recent analyses (e.g., Tofsted et al., 2009).

Next, we consider parameterizing the outer scale. Kaimal’s results also included data that could

be analyzed to form a relationship between the outer scale and height above the surface, H, and

the Obukhov length, LOB. In this process it also became obvious that standard spectral forms

containing an outer scale simply included Lo as a parameter, but without attaching that parameter

to any physically meaningful property of the atmosphere. As such, the best course appeared to

argue that a specific definition of outer scale be stated: Let κo = 1/Lo, such that the outer scale

may be defined as,

Φn(1/Lo, Lo)
/

ΦK(1/Lo) = 1/2. (15)

The outer scale is thus just the 3-dB level of the Revised von-Kármán spectrum relative to the

Kolmogorov spectrum. As a matter of interest, one may also define an integral scale, Λo,

representing the peak of the overall spectrum, which we expect to occur roughly in the center of

the “Energy Containing Range” (Hinze, 1987). This scale occurs approximately at Λo = 2Lo.

Based on this outer scale definition, the Kaimal et al. plot results could be analyzed (Tofsted,

2000), and the outer scale modeled as,

Lo =

{
H/(4.34

√
+ξ + 0.013), ξ > 0,

H/(0.34
√
−ξ + 0.013), ξ < 0,

(16)

where ξ = H/LOB is a dimensionless height ratio. Note that for large ξ argument, the outer scale

increases roughly as a function of (H |LOB|)1/2. In general LOB < 0 during daylight hours when

the sensible heat flux is positive (ground is heating the air), and LOB > 0 at night when this

situation is reversed. Thus Lo is generally larger during the daytime than at night, even at the

same height, a result that generally conflicts with the commonly used approximation Lo ≈ kH,

where k ≈ 0.4 is von-Kármán’s constant.

To determine the impact of this spectrum on angle-of-arrival, we examine the influence of the

spectrum on wave and phase structure functions, and the resulting influence on the

angle-of-arrival variance based on the equations in section 2. In order to compare these new
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results with the prior Kolmogorov-based results, the new expressions will be derived in forms

consistent with Fried’s original analysis.

4. Outer Scale and Diffraction Influenced Angle-of-Arrival

Using the Fried angle-of-arrival formulation described in section 2, we first describe the results of

that analysis for Kolmogorov turbulence, then consider the influence of the outer scale along with

diffraction effects. However, from the point of view of developing the results, we need to work

backwards, starting with the wave structure function, then dealing with the phase structure

function, which contains a diffraction related component, and finally the Kolmogorov based

angle-of-arrival variance. We can then work this same process for the Revised von-Kármán

spectrum.

Let us begin by repeating the equation for the wave structure function:

D(ρ) = 8π2 k2 L
∫

1

0

dc
∫

∞

0

κdκΦn(κ) [1 − J0(κ c ρ)] . (17)

To simplify the integrals, we let V = κ c ρ = κ cDu replace the Bessel function argument. We

then transform the argument of the spectral inner integral to one extending over V :

D(Du) = 8π2 β k2 LC2

nD
+5/3 u+5/3

∫
1

0

c+5/3 dc
∫

∞

0

V −8/3 [1 − J0(V )] dV. (18)

For constant turbulence conditions the inner and outer integrals are separable, where,

∫
1

0

c+5/3 dc =
3

8
,

∫
∞

0

V −8/3 [1 − J0(V )] dV = ℵ ≈ 1.1183344. (19)

These results allow us to define a nominal coherence length,

ρ̂−5/3

o = 4 × 3

8
π2 β ℵk2 LC2

n, (20)

such that the wave structure function for constant Kolmogorov turbulence may be expressed,

using S = D/ρ̂o,

D(Du) = 2 ρ̂−5/3

o u+5/3D+5/3 = 2S5/3 u5/3. (21)

Using this form, we next consider the effect of diffraction on the phase structure function. This

result was previously discussed in Tofsted (2011). As before, we repeat the phase structure
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function equation:

Dφ(ρ) = 8π2 k2 L
∫

1

0

dc
∫

∞

0

κdκΦn(κ) [1 − J0(κ c ρ)] cos2

[
κ2 λL c(1 − c)

4π

]

. (22)

Again introducing the same dimensionless variable V = κ c ρ = Ducκ, and again utilizing ρ̂o, the

double integral form can be expressed as,

Dφ(Du) = 2

(
Du

ρ̂0

)5/3 ∫
1

0

c5/3 dc

(3/8)

∫
∞

0

dV
V −8/3

ℵ [1 − J0(V )] cos2

[
V 2

(Qu)2

c(1 − c)

4π c2

]

. (23)

Clearly the double integral is only a function of Qu, reflecting the influence of diffraction.

Following a similar methodology as in previous papers on the topic of the phase structure

function, we now write this function as,

Dφ(Du) = 2 (Su)5/3 α(Qu) = D(Du)α(Qu), (24)

where,

α(Qu) =
∫

1

0

c5/3 dc

(3/8)

∫
∞

0

dV
V −8/3

ℵ [1 − J0(V )] cos2

[
V 2

(Qu)2

c(1 − c)

4π c2

]

. (25)

The form taken by this function is plotted in figure 1 for ten decades of R = Qu variation.

Figure 1. Phase structure function diffraction dependence factor

α(R), with R = Qu, for constant Kolmogorov

turbulence.
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Introducing the equation 24 representation of the phase structure function into the equation 3 tilt

parameter variance equation, and then introducing this result into equation 5, we produce an

equation for the angle-of-arrival variance of

〈
α2
〉

=
128S5/3

k2D2

∫
1

0

du [FC(u) − FL(u)] u8/3 α(Qu). (26)

The integral over the system aperture is clearly a function of Q alone, which may be further

normalized relative to the limiting response at Q → ∞, where α = 1. In this limit, the

component integrals evaluate to,

∫
1

0

duFC(u)u8/3 ≈ 0.03749;
∫

1

0

duFL(u)u8/3 ≈ 0.00489. (27)

such that 128 × (0.03749 − 0.00489) = 4.1728, and the angle-of-arrival variance may be

expressed as, 〈
α2
〉

= 4.1728S5/3 G(Q)/(k2D2). (28)

The function G(Q), thus defined, is plotted in figure 2. This function assumes near–limiting

behavior G(Q) ≈ 1 for Q > 3.

Figure 2. Angle-of-arrival variance diffraction dependence

function G(Q), with Q = D/
√

λL = D/P , for constant

Kolmogorov turbulence.

Comparison of this result with the Dror and Kopeika (1995) and Beland (1993) equations requires
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expanding S5/3 = (D/ρ̂o)
5/3 such that the limit at large Q can be expressed as,

〈
α2
〉

= 4.1728 (3/2)π2 β ℵLC2

n/D
1/3 = 2.2798LC2

n/D
1/3. (29)

For constant C2
n, Dror and Kopeika’s equation leads to a scaling factor of 2× 2.92× (3/8) = 2.19

corresponding to the full angle-of-arrival variance. Comparing the lead constants of Beland

(equation 1) and that used by Dror and Kopeika (equation 2), apparently the Beland result

corresponds to a single-axis angle-of-arrival, rather than the full angle-of-arrival variance.

In a more recent publication (Tofsted, 2012) the question of path varying turbulence strength was

addressed, revealing that this variation can be accounted for through rescaling of the S and Q

parameters. Thus the above forms are identical for variable path height geometries. However,

the introduction of path varying outer scale might introduce unusual changes in the wave and

phase structure functions. Therefore, in this initial study, only path constant outer scale

influences will be considered.

Given that caveat, we are now prepared to extend the angle-of-arrival analysis to the case of the

RvK turbulence spectrum. Following the pattern established when studying angle-of-arrival for

Kolmogorov turbulence, we first direct our attention on the wave structure function. Introducing

the outer scale influenced spectrum in equation 17, the argument to the Bessel function can again

be replaced by the variable V , but the resulting double integral no longer factors as two

independent integrals. Instead, a dependence on the dimensionless variable Zuc appears:

D(Du) = 8π2 β k2 LC2

n (Du)+5/3

∫
1

0

c+5/3dc
∫

∞

0

Ω
(
V

Zuc

)
[1 − J0(V )]

V 8/3
dV. (30)

We may, nevertheless, divide through the double integral by the factor (3/8)ℵ such that we may

again express the function in terms of the nominal coherence length ρ̂o from equation 20. The

complete wave structure function may thus be expressed using a form similar to equation 21,

D(Du) = 2 (Su)5/3H(Zu), (31)

where the new outer-scale dependent function,

H(Zu) =
∫

1

0

c+5/3

(3/8)
dc
∫

∞

0

Ω
(
V

Zuc

)
[1 − J0(V )]

ℵV 8/3
dV, (32)

is introduced. Now note that the Ω factor approaches unity at large argument. Thus, for small Z,

the integral approaches the limiting Kolmogorov behavior. That is, H(Zu) must have a limit of
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unity at small Zu. Conversely, for large Z, the outer scale influence will dominate. In this limit

it is advantageous to introduce yet another dimensionless constant, M = Lo/ρ̂o, along with the

function HH (x) = x5/3H(x), such that,

D(Du) = 2M5/3 HH(Zu). (33)

HH(Zu) approaches a constant limit as Zu → ∞, D(∞) ≈ 8.40M5/3; HH(∞) = 4.20. The

function HH (Zu) is plotted in figure 3, along with the small scale asymptotic dependence

(Zu)5/3.

Figure 3. Outer scale cutoff of the wave structure function (solid

line) compared to (Zu)5/3 power law for Kolmogorov

wave structure function.

The effect of the outer scale limitation on the refractive index spectrum is such that the wave

structure function exhibits an upper limit. Equivalently, the function H(Zu) must be

proportional to (Zu)−5/3 for large Zu such that D(ρ) approaches a finite upper bound.

Using the modified equation 33 wave structure function, we next explore the extension of the

outer scale impacts to the phase structure function. To express this structure function for the RvK

model, we again use the V variable, and pull the cosine-squared term from equation 25, to

produce,

Dφ(Du) = 2 (Su)5/3

∫
1

0

c5/3 dc

(3/8)

∫
∞

0

dV
[1 − J0(V )]

ℵ V 8/3
Ω
(
V

Zuc

)
cos2

[
V 2

(Qu)2

(1 − c)

4π c

]

. (34)
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Following the model of the analysis for Kolmogorov turbulence, the wave structure function

effects are extracted, leaving a function of both Qu and Zu, reflecting the influences of both

diffraction and outer scale. The phase structure function may thus be expressed as,

Dφ(Du) = D(Du)A(Qu, Zu) = 2 (Su)5/3H(Zu)A(Qu, Zu), (35)

where,

A(Qu, Zu) =
∫

1

0

c5/3 dc

(3/8)

∫
∞

0

dV
[1 − J0(V )]

ℵV 8/3

Ω[V/(Zuc)]

H(Zu)
cos2

[
V 2

(Qu)2

(1 − c)

4π c

]

. (36)

The form taken by this two-dimensional function is plotted for a series of values of Qu as

functions of Zu in figure 4. Zu varies over the range from 10−8 to 10+4, exhibiting

near-asymptotic behaviors at both extremes. The Qu values ranged from Qu = 2−6, for the

lowest curve, to 2+6 for the highest curve, in increments of factors of 2 between consecutive

curves.

Figure 4. Outer scale impact on transition function of phase

structure function. 13 plots of different Qu values from

2−6 (bottom-most curve) to 2+6 (upper-most curve)

differing by a factor of 2 between each.

To compare the behavior of A(Qu,Zu) with that of α(Qu), we consider the limit Zu � 1. To

compare these cases we plot the A(Qu, 10−8) against α(Qu) in figure 5. As expected, the

asymptotic behavior of A(Qu,Zu) ranges between 0.5 and 1.0 at Zu� 1, corresponding to the

12



asymptotic behaviors of Qu� 1 and Qu� 1, respectively, seen in figure 1. The range of Qu

selected is characteristic of most imaging scenarios except for extremely large or small optics.

Figure 5. Comparison of α(R) from the Kolmogorov turbulence

model, versus A(R, Zu) from the Revised von Kármán

turbulence model, with R = Qu.

For the remaining behavior of A(Qu,Zu), obviously the function exhibits a complicated behavior

that defies easy characterization. So, rather than attempting to characterize this intermediate

result, let us instead continue on to determine the angle-of-arrival variance for RvK turbulence.

Introducing the tabulated A(Qu,Zu) results into a numerical integration routine, we begin with

equation 26 as modified by the RvK phase structure function:

〈α2〉 =
128S5/3

k2D2

∫
1

0

du [FC(u)− FL(u)] u8/3H(Zu)A(Qu, Zu). (37)

Now, the results of this integration will approach those of the equation 27 limiting behaviors

when Zu � 1 � Qu. Therefore, for comparison purposes we may multiply and divide by the

factor 0.03260 = 0.03749 - 0.00489. This produces the same lead coefficient as in equation 29

such that we can write,

〈α2〉 = 2.2798LC2

n/D
1/3 GG(Q,Z), (38)

where,

GG(Q,Z) =
∫

1

0

du
[FC(u)− FL(u)]

0.03260
u8/3H(Zu)A(Qu,Zu). (39)
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Like the G(Q) function, the GG(Q,Z) function will approach unity when Z � 1 � Q, but will

then decay when this condition does not hold. This function is plotted for a range of Q values as

a function of Z in figure 6.

Figure 6. Weighting function GG(Q, Z) for the range

10−8 < Z < 10+4 and 2−6 < Q < 2+6 (lowest to

highest curves).

Figure 7 then shows the similarity in the limiting behavior of GG(Q,Z) at low values of Z

compared to the behavior of G(Q) from figure 2. From this comparison we observe an apparent

correlation between the effects of small Z and small Q in the GG(Q,Z) model such that at low Q

GG tracks increasingly below G(Q) as Q drops.

5. Discussion

We thus have developed a picture of the behavior of the angle-of-arrival variance as the outer

scale and diffraction effects vary. However, as we also have a means of connecting the

atmospheric propagation characteristics to typical meteorological characteristics, let us consider

what we might encounter as typical effects. To begin, let us select a typical windspeed of

3.5 m/s. This is characteristic of a daytime desert atmosphere (c.f., figure 14 of Tofsted et

al. (2009), where we considered mean hourly windspeeds collected over a 60 day period in 2008).

Let us also consider a path height of H = 4 m AGL (above ground level). Typical daytime

14



Figure 7. Comparison of G(Q) function plotted in figure 2 against

the GG(Q, Z) from figure 6 for small Z.

temperatures during our measurement period averaged around 25 ◦C or roughly 300 K. The

White Sands area stands at approximately 1400 m ASL (above sea level) with typical atmospheric

pressure of P = 880 mbar (millibars), and characteristic sensible heat flux values were in the

range 200–600 W/m2. We write the equation for the Obukhov length as (Tofsted, 1993),

LOb = −ρCP T u
3
?

k gHS
, (40)

where ρ is the dry air density,

ρ = 0.34838P/T, (41)

with pressure P in millibars, and temperature T in Kelvin, such that ρ is expressed as kg/m3; CP

is the heat capacity of air at constant pressure, 1004.84 J/(kg K); k is von-Karman’s constant,

k ≈ 0.4; g is the gravitational attraction, g = 9.81 m/s2; u? is the friction velocity in m/s; and HS

is the sensible heat flux. While the true friction velocity exhibits an effect due to diabatic

influences, for the sake of simplicity here we use only the logarithmic wind profile, such that ψm,

the momentum diabatic function, is zero, and we posit,

u∗ =
k u

ln(H/Ho) − ψm
≈ k u

ln(H/Ho)
, (42)

where Ho is the surface roughness length (Hansen, 1980), which we determined through
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measurements to be approximate 4.5 cm, which approximately matches Hansen’s recommended

relative length compared to typical roughness element heights of 1 m (mesquite bushes, grass, and

yuccas plants). For a 2-m-wind measurement height, and wind speed u = 3.5 m/s, we thus

estimate a friction velocity of u∗ ≈ 0.37 m/s.

The atmospheric density is approximately ρ = 1.022 kg/m3. Hence, ρCP = 1026.9 J/(m3 K),

such that Q = HS/(ρCP ) will range from 0.195 to 0.584 K m/s. Therefore, we can express the

range of the Obukhov length as,

LOb = − T u3
?

k gQ = −20 m...− 7 m. (43)

For this range of Obukhov length we obtain from equation 16 a range of outer scale from 14 m to

24 m for a path height of 4 m, where the outer scale is shorter under stronger turbulence

conditions.

Consider then a range of optics aperture sizes ranging from 2.5 cm for binocular optics to 20 cm

for a telescope optic. For this range of the parameter D, let us also consider path length ranging

from 1 km to 4 km and wavelength equal to 0.55 µm (visible radiation), or a range of

P = (λL)1/2 of 2.35 cm to 4.7 cm.

For D = 2.5 cm, Z = D/Lo ranges from 0.0010 to 0.0018, while Q = D/P varies from 0.53 to

1.06. Hence, from figure 6 the GG coefficient varies from 0.85 to 0.90 where the impacts of Q

and Z are approximately equal.

For D = 20 cm, Z ranges from 0.0083 to 0.0143, while Q varies from 4.26 to 8.51, and GG varies

from 0.88 to 0.93 where the impact is virtually all due to variations in Z.

Overall, the scaling constant from figure 6 is between 0.80 and 0.95, or (in combination with the

scaling constant 2.28 from equation 38) when compared to the constant 2.19 derived from

equation 2, one obtains a range from 1.824 to 2.17. That is, angle-of-arrival variance ratios range

from 0.833 to 0.989. Of course, if we intend to use angle-of-arrival variance to compute C2
n, we

recognize that turbulence strength is highly variable, often exhibiting a third of an order of

magnitude variance around a mean with correlation times on the order of several seconds or less.

Also, since most imaging scenarios involve Q values greater than unity, and usually of the order 2

or greater, we expect that the outer scale influence (rather than diffraction) will be the dominant

term, and this impact does extend down to produce a 10% effect even for Z values on the order of

0.01, and not, as Dror and Kopeika indicated, merely Z < 1.
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6. Conclusions

In this study a new analysis of the influence of both diffraction and outer scale of turbulence

effects on angle-of-arrival variance has been performed. This analysis has shown that outer scale

influences can be significant even for aperture sizes far less than the outer scale size. To use the

information developed in this report, one can simply apply rule-of-thumb estimates in

determining the Obukhov length, plus estimates of the optical path height, to determine the outer

scale. From this knowledge, and knowledge of the system aperture size, one can easily determine

the correction necessary to obtain a more accurate estimate of C2
n from observed edge motion

analysis.

This analysis has also shown the relative strengths and weaknesses in previous analyses. In

particular, the Dror and Kopeika (1995) equation appears to be roughly correct as long as

Z � 1 < Q. However, this condition differs from that indicated by Dror and Kopeika of

Z < 1 � Q. More generally, the new formulation provides a method of estimation under a far

wider set of measurement conditions than that supported by previous analyses. Also, Tofsted

(1992) only considered the outer edge of the wave propagating toward the aperture when

evaluating angle-of-arrival variance. The current analysis is obviously more suitable for circular

aperture systems involving an ensemble of point separations in the aperture.
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